
HALOCYCLIZATIONS: THE CYCLIZATION OF HETEROCYCLIC OLEFINIC AMIDES AND UREAS

T. W. Balko, R. S. Brinkmeyer*, and N. H. Terando Lilly Research Laboratories A Division of Eli Lilly and Company Greenfield, IN 46140

Abstract: The halocyclization of N-heterocyclicpentenamides and allylureas with N-bromosuccinimide yields the pyrrolidinones <u>3</u> and imidazolidinones <u>5</u>, respectively. The thiazolylpentenamide also yields the 6-membered ring lactam.

The halocyclizations of olefinic compounds leading to heterocycles has been well documented.^{1"3} For example, halocyclizations to lactams,¹ lactones² and cyclic carbonates³ have been studied. Of particular interest to us was the cyclization of olefinic amides to lactams, $\underline{3}$, and the heretofore unreported cyclization of olefinic ureas to imidazolidinones, 5.

The cyclization of olefinic amides promoted by a halonium ion has produced, in only a few cases we are aware of, the lactam, $\underline{3}$. In the cases reported, the predominant product from these halocyclizations is not the lactam, but instead the imino ether which subsequently hydrolyses to the lactone, $\underline{2}$ (eq. 1). Two exceptions are: 1) halocyclization (using e.g. N-bromosuccinimide) of N-sulfonylolefinic amides¹ to the 4-halomethyl β -lactams, however, attempts to form the corresponding 5-membered ring lactams failed yielding instead the lactone $\underline{2}$ (eq. 1); and 2) the cyclization of a bis-silylated imidate with I₂. Since our interest was to form the 5-membered ring lactams, we searched for groups which would facilitate nitrogen cyclization.

2045

Our first attempt was treatment of N-aryl pentenamides⁴ <u>la</u> and <u>lb</u> (Table 1) with a halonium ion source such as NBS (CCl₄, 23°C) which gave after work up only the corresponding lactone 2^4 in good yield. This corresponded to what had previously been described above. Next, we looked at compounds where R is a heterocycle (see Table 1). In these cases, halocyclization gave the pyrrolidinone <u>3</u> exclusively, no lactone <u>2</u> was detected.

Entry	R	Product ⁵	% Yield 3 ⁵	mp, °C
а	3-CF ₃ C ₆ H ₄	2	75	oil
b	3-0MeC ₆ H ₄	2	63	oil
с	O·N +≪≫	<u>3</u> c + t	30	oil
đ	+K ^{N·N} →	<u>3</u> c + t	73	85-7
e	R _↓ S	<u>1</u> (R=Br)	63	175 - 6
	×́×́	+3 (R=Br) c + t	10	oil
£	Br S ~		43	oil

Table 1: Halocyclization of pentenamides 1 to 3

Product <u>3</u> was a mixture of diastereomers, the ratio for pyrrolidinones <u>3c - e</u> being approximately 1:1. In the case of <u>3d</u>, the cis and trans isomers were separated by lowpressure liquid chromatography. By proton NMR, the relative stereochemistry of each isomer (isomer A, mp 135-136°C and isomer B, mp 81-82°C) was uncertain. By single crystal x-ray crystallography isomer B was assigned the <u>trans</u> configuration (Figure 1), as well as confirming cyclization on nitrogen.

Figure 1: ORTEP drawing of the trans isomer of <u>3d</u>

Treatment of amide <u>le</u> with NBS gave both ring bromination and bromocyclization. An unexpected cyclization with <u>lf</u> gave the 6-membered lactam (Table 1) exclusively in 43% yield. Although reproducible, we cannot as of yet explain why the 6-membered ring is formed as opposed to the 5-membered ring.

In the case of the olefinic ureas,⁶ treatment with NBS (CCL₄, 23°C) gave the bromomethylimidazolidinones in good yield (Table 2). Only in the example where R was p-tolyl did we observe overbromination to give a second product, N-[2-bromo-4-methyl]phenyl-N'methyl-5'-bromomethylimidazolidinone.

Entry	R	R'	x	%Yield 5^5	mp°C
		<u> </u>		· · · · · · · · · · · · · · · · · · ·	
a	$4-C1C_6H_4$	Me	Br	68	oil
b	3-C1C6H4	Me	Br	67	oil
с	4-MeC ₆ H ₄	Me	Br	40	oil
đ	2,6-diMeC ₆ H ₄	Me	Br	65	80-5
е	$3-CF_3C_6H_4$	Me	Br	36	oil
f	3-CF3C6H4	Me	I	30	oil
g	$3-CF_3C_6H_4$	Ph	Br	95	92-4
h	2-C1C ₆ H ₄ -CO-	Me	Br	63	88-91
i	EtO_2CCH_2	Me	Br	20	oil
j	EtO2CCH2	Ph	Br	93	oil
k	EtO_2CCH_2	н	Br	7	oil
1	0-N	Me	Br	47	115-21

Table 2: Halocyclization of olefinic urea 4 to 5

In summary, our experience is that the 5-membered ring lactams can be formed at least when R is isoxazole, thiadiazole or thiazole, but fails when R is aryl, as do the reported cases where R is tosyl¹, tert-butyldimethylsilyl,¹ and H.² The halocyclization of olefinic ureas <u>1</u> to bromomethylimidazolidinones <u>2</u> provided an efficient route to these compounds allowing for further elaboration of these novel intermediates. This cyclization is interesting in that the halocyclization of the corresponding N-aryl pyrrolidinone systems¹ (nitrogen replaced by carbon) did not cyclize in this manner, instead yielding lactone <u>2</u>. Acknowledgement: We thank the Lilly X-ray Crystallography Laboratory for their assistance with the x-ray experiment.

References

- 1. Biloski, A. J.; Wood, R. D.; Ganem, B. J. Am. Chem. Soc. 1982, 104, 3233.
- Corey, E. J.; Fleet, W. J.; Kato, M. <u>Tetrahedron Lett</u>. 1973, 3963. Rengevitch, E. N.; Staninets, V. L.; Shilov, E. A. <u>Proc. Acad. Sci. USSR</u> 1962, <u>146</u>, 787. It is of note that phenylselenylchloride cyclizations of pentenamides also fail, see Clive, D.L.J.; Wong, C. K.; Kiel, W. A.; Menchen, S. M. <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u> 1978, 379. Toshimitsu, A.; Terao, K.; Uemura, S. Tetrahedron Lett. 1984, 5917.
- For the synthesis of halomethyl carbonates, see Lipshutz, B. H.; Kozlowski, J. A. J. Org. Chem. 1984, <u>49</u>, 1147; Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S.; Tomasini, C. <u>J. Org. Chem.</u> 1984, <u>49</u> 701 and references therein. For iodolactonizations, see Bartlett, P. A.; Richardson, D. P.; Myerson, J. <u>Tetrahedron</u> 1984, <u>40</u>, 2317 and references therein.
- 4. The N-substituted pentenamides were made by condensation of the anilines or heterocyclic amines with 2-methyl-4-pentenoate ethyl ester (sodium methoxide, THF, reflux, 50-75% purified). The 3-methyl-4-pentenoate ethyl ester was made by an orthoester Claisen reaction with allyl alcohol and triethyl orthopropionate (propionic acid catalyst, reflux, 90% yield).
- All new compounds have satisfactory spectra ir, proton NMR (IBM 80 MHz or Bruker 250 MHz), and mass spectra consistent with assigned structures. Composition was determined by elemental analysis.
- 6. The olefinic ureas, <u>1</u>, were prepared in high yields by standard procedures with readily available starting materials by reaction of an isocyanate with N-substituted (R=H, Me, Ph) allylamines. Where the isocyanates are not available, the amine was reacted with 1,1'-carbonyldiimidazole (Staab, H. A.; Benz, W. <u>Ann.</u> 1961, 648, 72) then the N-substituted allylamine to give the ureas in high yield.

(Received in USA 24 September 1988; accepted 28 February 1989)

2048